11,846 research outputs found

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation

    Weighted Branching Simulation Distance for Parametric Weighted Kripke Structures

    Full text link
    This paper concerns branching simulation for weighted Kripke structures with parametric weights. Concretely, we consider a weighted extension of branching simulation where a single transitions can be matched by a sequence of transitions while preserving the branching behavior. We relax this notion to allow for a small degree of deviation in the matching of weights, inducing a directed distance on states. The distance between two states can be used directly to relate properties of the states within a sub-fragment of weighted CTL. The problem of relating systems thus changes to minimizing the distance which, in the general parametric case, corresponds to finding suitable parameter valuations such that one system can approximately simulate another. Although the distance considers a potentially infinite set of transition sequences we demonstrate that there exists an upper bound on the length of relevant sequences, thereby establishing the computability of the distance.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    Model Checking One-clock Priced Timed Automata

    Full text link
    We consider the model of priced (a.k.a. weighted) timed automata, an extension of timed automata with cost information on both locations and transitions, and we study various model-checking problems for that model based on extensions of classical temporal logics with cost constraints on modalities. We prove that, under the assumption that the model has only one clock, model-checking this class of models against the logic WCTL, CTL with cost-constrained modalities, is PSPACE-complete (while it has been shown undecidable as soon as the model has three clocks). We also prove that model-checking WMTL, LTL with cost-constrained modalities, is decidable only if there is a single clock in the model and a single stopwatch cost variable (i.e., whose slopes lie in {0,1}).Comment: 28 page

    A Faster-Than Relation for Semi-Markov Decision Processes

    Get PDF
    When modeling concurrent or cyber-physical systems, non-functional requirements such as time are important to consider. In order to improve the timing aspects of a model, it is necessary to have some notion of what it means for a process to be faster than another, which can guide the stepwise refinement of the model. To this end we study a faster-than relation for semi-Markov decision processes and compare it to standard notions for relating systems. We consider the compositional aspects of this relation, and show that the faster-than relation is not a precongruence with respect to parallel composition, hence giving rise to so-called parallel timing anomalies. We take the first steps toward understanding this problem by identifying decidable conditions sufficient to avoid parallel timing anomalies in the absence of non-determinism.Comment: In Proceedings QAPL 2019, arXiv:2001.0616

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c

    Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. X. The Question of Being Male

    Get PDF
    Three new species Parafilitanais mexicana, Collettea elongata, and Paragathotanais medius are described from deep-sea localities in the Gulf of Mexico. The male of Parafilitanais does not vary conspicuously from the female, except for possessing pleopods. Male Paragathotanais reveal that the mouthparts display some degree of sexual dimorphism. Males of all 3 species possess functional mouthparts. The problems identifying male Tanaidacea are discussed. The number of terminal spiniform setae on the maxillule is considered invalid as a diagnostic character. Keys to the species of Parafilitanais and Paragathotanais are given

    Online Bin Packing with Advice

    Get PDF
    We consider the online bin packing problem under the advice complexity model where the 'online constraint' is relaxed and an algorithm receives partial information about the future requests. We provide tight upper and lower bounds for the amount of advice an algorithm needs to achieve an optimal packing. We also introduce an algorithm that, when provided with log n + o(log n) bits of advice, achieves a competitive ratio of 3/2 for the general problem. This algorithm is simple and is expected to find real-world applications. We introduce another algorithm that receives 2n + o(n) bits of advice and achieves a competitive ratio of 4/3 + {\epsilon}. Finally, we provide a lower bound argument that implies that advice of linear size is required for an algorithm to achieve a competitive ratio better than 9/8.Comment: 19 pages, 1 figure (2 subfigures
    corecore